Processing math: 100%
Subalgebra 2A11A16
15 out of 61
Computations done by the calculator project.

Subalgebra type: 2A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A11 .
Centralizer: A12 + T2 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A13
Basis of Cartan of centralizer: 4 vectors: (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 1, 0, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: 3A11 , A41+2A11 , A12+2A11 .

Elements Cartan subalgebra scaled to act by two by components: A11: (1, 1, 1, 1, 1, 1): 2, A11: (0, 1, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g21, g17
Positive simple generators: g21, g17
Cartan symmetric matrix: (2002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2002)
Decomposition of ambient Lie algebra: V2ω22Vω1+ω2V2ω16Vω26Vω110V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+2ψ2+2ψ3+2ψ4Vω2+2ψ2+4ψ32ψ4Vω1+ω22ψ3+4ψ4V2ψ1+4ψ2+2ψ3V2ψ1+2ψ2Vω12ψ1+2ψ3+2ψ4Vω1+2ψ12ψ2+2ψ4V2ω2V2ω1Vω22ψ1+2ψ22ψ3+2ψ4Vω2+2ψ14ψ3+2ψ4Vω22ψ1+4ψ32ψ4Vω2+2ψ12ψ2+2ψ32ψ4V4ψ1+2ψ2+2ψ34V0V4ψ12ψ22ψ3Vω1+ω2+2ψ34ψ4Vω12ψ1+2ψ22ψ4Vω1+2ψ12ψ32ψ4Vω22ψ24ψ3+2ψ4V2ψ12ψ2V2ψ14ψ22ψ3Vω12ψ22ψ32ψ4
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 26) ; the vectors are over the primal subalgebra.g4g9g3h3h5+h2h4h6+h1g3g9g4g11g18g15g12g7g16g5g8g2g14g10g13g21g20g19g17
weight0000000000ω1ω1ω1ω1ω1ω1ω2ω2ω2ω2ω2ω22ω1ω1+ω2ω1+ω22ω2
weights rel. to Cartan of (centralizer+semisimple s.a.). 2ψ14ψ22ψ32ψ12ψ24ψ12ψ22ψ300004ψ1+2ψ2+2ψ32ψ1+2ψ22ψ1+4ψ2+2ψ3ω12ψ22ψ32ψ4ω1+2ψ12ψ32ψ4ω12ψ1+2ψ22ψ4ω1+2ψ12ψ2+2ψ4ω12ψ1+2ψ3+2ψ4ω1+2ψ2+2ψ3+2ψ4ω22ψ24ψ3+2ψ4ω2+2ψ12ψ2+2ψ32ψ4ω22ψ1+4ψ32ψ4ω2+2ψ14ψ3+2ψ4ω22ψ1+2ψ22ψ3+2ψ4ω2+2ψ2+4ψ32ψ42ω1ω1+ω2+2ψ34ψ4ω1+ω22ψ3+4ψ42ω2
Isotypic module decomposition over primal subalgebra (total 23 isotypic components).
Isotypical components + highest weightV2ψ14ψ22ψ3 → (0, 0, 2, -4, -2, 0)V2ψ12ψ2 → (0, 0, -2, -2, 0, 0)V4ψ12ψ22ψ3 → (0, 0, 4, -2, -2, 0)V0 → (0, 0, 0, 0, 0, 0)V4ψ1+2ψ2+2ψ3 → (0, 0, -4, 2, 2, 0)V2ψ1+2ψ2 → (0, 0, 2, 2, 0, 0)V2ψ1+4ψ2+2ψ3 → (0, 0, -2, 4, 2, 0)Vω12ψ22ψ32ψ4 → (1, 0, 0, -2, -2, -2)Vω1+2ψ12ψ32ψ4 → (1, 0, 2, 0, -2, -2)Vω12ψ1+2ψ22ψ4 → (1, 0, -2, 2, 0, -2)Vω1+2ψ12ψ2+2ψ4 → (1, 0, 2, -2, 0, 2)Vω12ψ1+2ψ3+2ψ4 → (1, 0, -2, 0, 2, 2)Vω1+2ψ2+2ψ3+2ψ4 → (1, 0, 0, 2, 2, 2)Vω22ψ24ψ3+2ψ4 → (0, 1, 0, -2, -4, 2)Vω2+2ψ12ψ2+2ψ32ψ4 → (0, 1, 2, -2, 2, -2)Vω22ψ1+4ψ32ψ4 → (0, 1, -2, 0, 4, -2)Vω2+2ψ14ψ3+2ψ4 → (0, 1, 2, 0, -4, 2)Vω22ψ1+2ψ22ψ3+2ψ4 → (0, 1, -2, 2, -2, 2)Vω2+2ψ2+4ψ32ψ4 → (0, 1, 0, 2, 4, -2)V2ω1 → (2, 0, 0, 0, 0, 0)Vω1+ω2+2ψ34ψ4 → (1, 1, 0, 0, 2, -4)Vω1+ω22ψ3+4ψ4 → (1, 1, 0, 0, -2, 4)V2ω2 → (0, 2, 0, 0, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17W18W19W20W21W22W23
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g4
g9
g3
Cartan of centralizer component.
h3
h5+h2
h4
h6+h1
g3
g9
g4
g11
g16
g18
g7
g15
g12
g12
g15
g7
g18
g16
g11
g5
g13
g8
g10
g2
g14
g14
g2
g10
g8
g13
g5
Semisimple subalgebra component.
g21
h6+h5+h4+h3+h2+h1
2g21
g20
g1
g6
g19
g19
g6
g1
g20
Semisimple subalgebra component.
g17
h5+h4+h3+h2
2g17
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0000000ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ψ14ψ22ψ32ψ12ψ24ψ12ψ22ψ304ψ1+2ψ2+2ψ32ψ1+2ψ22ψ1+4ψ2+2ψ3ω12ψ22ψ32ψ4
ω12ψ22ψ32ψ4
ω1+2ψ12ψ32ψ4
ω1+2ψ12ψ32ψ4
ω12ψ1+2ψ22ψ4
ω12ψ1+2ψ22ψ4
ω1+2ψ12ψ2+2ψ4
ω1+2ψ12ψ2+2ψ4
ω12ψ1+2ψ3+2ψ4
ω12ψ1+2ψ3+2ψ4
ω1+2ψ2+2ψ3+2ψ4
ω1+2ψ2+2ψ3+2ψ4
ω22ψ24ψ3+2ψ4
ω22ψ24ψ3+2ψ4
ω2+2ψ12ψ2+2ψ32ψ4
ω2+2ψ12ψ2+2ψ32ψ4
ω22ψ1+4ψ32ψ4
ω22ψ1+4ψ32ψ4
ω2+2ψ14ψ3+2ψ4
ω2+2ψ14ψ3+2ψ4
ω22ψ1+2ψ22ψ3+2ψ4
ω22ψ1+2ψ22ψ3+2ψ4
ω2+2ψ2+4ψ32ψ4
ω2+2ψ2+4ψ32ψ4
2ω1
0
2ω1
ω1+ω2+2ψ34ψ4
ω1+ω2+2ψ34ψ4
ω1ω2+2ψ34ψ4
ω1ω2+2ψ34ψ4
ω1+ω22ψ3+4ψ4
ω1+ω22ψ3+4ψ4
ω1ω22ψ3+4ψ4
ω1ω22ψ3+4ψ4
2ω2
0
2ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ψ14ψ22ψ3M2ψ12ψ2M4ψ12ψ22ψ3M0M4ψ1+2ψ2+2ψ3M2ψ1+2ψ2M2ψ1+4ψ2+2ψ3Mω12ψ22ψ32ψ4Mω12ψ22ψ32ψ4Mω1+2ψ12ψ32ψ4Mω1+2ψ12ψ32ψ4Mω12ψ1+2ψ22ψ4Mω12ψ1+2ψ22ψ4Mω1+2ψ12ψ2+2ψ4Mω1+2ψ12ψ2+2ψ4Mω12ψ1+2ψ3+2ψ4Mω12ψ1+2ψ3+2ψ4Mω1+2ψ2+2ψ3+2ψ4Mω1+2ψ2+2ψ3+2ψ4Mω22ψ24ψ3+2ψ4Mω22ψ24ψ3+2ψ4Mω2+2ψ12ψ2+2ψ32ψ4Mω2+2ψ12ψ2+2ψ32ψ4Mω22ψ1+4ψ32ψ4Mω22ψ1+4ψ32ψ4Mω2+2ψ14ψ3+2ψ4Mω2+2ψ14ψ3+2ψ4Mω22ψ1+2ψ22ψ3+2ψ4Mω22ψ1+2ψ22ψ3+2ψ4Mω2+2ψ2+4ψ32ψ4Mω2+2ψ2+4ψ32ψ4M2ω1M0M2ω1Mω1+ω2+2ψ34ψ4Mω1+ω2+2ψ34ψ4Mω1ω2+2ψ34ψ4Mω1ω2+2ψ34ψ4Mω1+ω22ψ3+4ψ4Mω1+ω22ψ3+4ψ4Mω1ω22ψ3+4ψ4Mω1ω22ψ3+4ψ4M2ω2M0M2ω2
Isotypic characterM2ψ14ψ22ψ3M2ψ12ψ2M4ψ12ψ22ψ34M0M4ψ1+2ψ2+2ψ3M2ψ1+2ψ2M2ψ1+4ψ2+2ψ3Mω12ψ22ψ32ψ4Mω12ψ22ψ32ψ4Mω1+2ψ12ψ32ψ4Mω1+2ψ12ψ32ψ4Mω12ψ1+2ψ22ψ4Mω12ψ1+2ψ22ψ4Mω1+2ψ12ψ2+2ψ4Mω1+2ψ12ψ2+2ψ4Mω12ψ1+2ψ3+2ψ4Mω12ψ1+2ψ3+2ψ4Mω1+2ψ2+2ψ3+2ψ4Mω1+2ψ2+2ψ3+2ψ4Mω22ψ24ψ3+2ψ4Mω22ψ24ψ3+2ψ4Mω2+2ψ12ψ2+2ψ32ψ4Mω2+2ψ12ψ2+2ψ32ψ4Mω22ψ1+4ψ32ψ4Mω22ψ1+4ψ32ψ4Mω2+2ψ14ψ3+2ψ4Mω2+2ψ14ψ3+2ψ4Mω22ψ1+2ψ22ψ3+2ψ4Mω22ψ1+2ψ22ψ3+2ψ4Mω2+2ψ2+4ψ32ψ4Mω2+2ψ2+4ψ32ψ4M2ω1M0M2ω1Mω1+ω2+2ψ34ψ4Mω1+ω2+2ψ34ψ4Mω1ω2+2ψ34ψ4Mω1ω2+2ψ34ψ4Mω1+ω22ψ3+4ψ4Mω1+ω22ψ3+4ψ4Mω1ω22ψ3+4ψ4Mω1ω22ψ3+4ψ4M2ω2M0M2ω2

Semisimple subalgebra: W_{20}+W_{23}
Centralizer extension: W_{1}+W_{2}+W_{3}+W_{4}+W_{5}+W_{6}+W_{7}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00, 0.00): (250.00, 300.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00, 0.00): (200.00, 350.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
5: (0.00, 0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 371 arithmetic operations while solving the Serre relations polynomial system.